
BTech451
Final Presentation

Dian LIN

Supervised By Dr. Wannes van der Mark, Dr. Tariq Khan

 Code Runner Extension

Code Runner is a free and open-source question-type in Moodle
that allows students to answer programing assignments.

Introduction: Push up barriers(code implementations) into
Code Runner against cheating.

Motivation: The Functionality of cheating detection is not covered
yet by Code Runner. Which may cause:

1. Being unfair to hard-working students
2. A loss of faith in Code Runner
3. Students try to cheat in Code Runner

Recall

• Studies have been done in first semester:

1. Two research:

 -Similarity checking without comments* (not feasible, normally high similarity occurs)

 -Programming variation(Hard to be detected by Code Runner)

2. Anti-cheat idea testing (Java): Each student being assigned unique option(question)

 -Database schema validation

 -Prototype build-up

Reason of testing: Code Runner is a plugin of Moodle, implementing the idea without testing
would possibly destroy Moodle as well as the database.

* What Code Runner works currently does not require students to add comments

Research Process
(Similarity Checking without Comments)

Length of Program Similarity percentage

3 lines (shortest) 100%

3 - 67 lines 68% - 77%

67 lines(longest) 56.6%

Median Length: 30 lines Median similarity:76.7%(relatively high)

Analysis: High similarity would occur due to

short coding length, same question and example

provided in lectures.

Conclusion: Similarity checking is not a feasible

anti-cheating approach because of above

reasons.

Research Process
(Programming variation)

• Question types being selected:
1. recursive question: summing numbers.

2. pre-define question: binary tree.

3. sorting question: bubble-sort, insertion-sort and merge-sort.

• Analysis:
1. Solutions of recursive and sorting questions are both easily found online,

but pre-define question are not possible since Code Runner define Class
for participants.

2. Programming languages translations is an unavoidable personal skill
which is not able to be detected by Code Runner.

Conclusion: pre-defined questions become a preferred

question creation way but can't prevent copy-paste cheating.

Second semester studies

• One research: Question recycling. Aims to find out how many or what
percentage of old questions in Code Runner have been reused.

• Two implementations:
1. Unique questions(options) being assigned to different students.(prototype

from Semester 1)

2. Similarity checking with comments*: checking between submissions

• Requirement: PHP programming language

*When comments are required to be added in Code Runner

Research process
(Question Recycling)

Target: one of Stage one Computer Science courses.
Number of Questions Percentage Number of Test Cases Percentage

Reused 35 85% 34 83%

New Defined 6 15% 7 17%

Total 41 100% 41 100%

Analysis: most questions have been recycled without changing
test cases. A high probability of recycling indicates a low anti-
cheat performance.
Conclusion: Question recycling provides an invisible way for
cheaters to get an unfair pass. It can be solved by restricting
students’ access after they have completed the course.

Code Runner Implementation 1
(Personalized assessment)

• Idea: Instead of assigning different questions, being assigned options.

• Description: Creating several options under one question description,
then assigning random options to random students.

• Why option: Even difficulty guarantees a fair system.

• Different from Question Bank: Question bank basically defines
different questions, which implies that different difficulties may
leader to unfair assignments.

Personalized assessment
(Continued)

Most of user interface and functionalities should be inherited. For UI, one more field called
“Question options” will be added, and corresponding text area will also be added in the rest parts in
question creation page to specify test cases and sample answers for each options.

Personalized assessment
(Continued)

• In order to make the UI functional,
user input should be inserted into
Moodle database for further use
when students attempt options.

• New database schema needs to be
defined.

• All details of test cases will store in
new database table.

• All functions used to relate to
“testcases” table will have to
redirected to new database table,

• Mdl_question_options

• New relationships are built up.

Mdl_question_options

Relationships of
Tables

mdl_question

id(primary key)

category

name

questiontext

qtype

mdl_question_categories

id(primary key)

name

contextid

mdl_question_options

id(primary key)

Questionid

Optionname

Optiontext

Answerforoption

Optionsampleanswer

optionfortestcase

textcode

…

expected

mark

mdl_question_coderunner_options

id(primary key)

questionid

coderunnertype

prototypetype

allornothing

1

many

1

many

1

many

Personalized assessment
(Continued)

• After two options, Odd and Even, were saved from UI by new anti-
cheat system, all details about each options should be inserted into
new database table with current question ID. Shown below:

Personalized assessment
(Continued)

• As new anti-cheat system maintains the functionality from Sandbox which is used to run the
students answers based on test cases. After student view of question has been changed to option
view, Sandbox works in the same way as before.

Code Runner Implementation 2
(Similarity Checking with Comments)

• Idea: similarity checking with comments required

• Description: Code Runner requires students to add comments for
their program.

• Advantage:
1. Comments are personal thoughts so that they are unlike to be same

2. Adding more distinction between submissions.

3. Help students to have a better learning outcomes. (deeper understanding
on codes)

• Expected outputs: (only highest similarity will be tracked)

1. Comparison between the newest submission and submitted ones.

2. Summary similarity table of every submission after the assignment is due.

Similarity Checking with Comments
(Continued)

• Tracking the details of the student who has the highest similarity
percentage with current submission. May be used in further analysis
for lecturers or tutors. One example below:

Similarity Checking with Comments
(Continued)

• After the assignment
is inactive, summary
similarity table will
be generated. Only
highest similarity
percentage would be
recorded.

• Where program with
comments still have
high similarity
percentage should be
noticed.

Future work
• Significant downsides:

1. Nonsense comments could possibly be added, similarity will be reduced
while it is not allowed.

2. Heavy manual work-loads for options creating.

• Solutions:
1. Requires Artificial Intelligent knowledge. AI plugin, setting training set

within the plugin, where training set contains sample comments, should be
large enough including different comment styles and texts. Matching
students’ comments with training set.

2. Introduce the idea from Problet* where one general case created, distinct
options will be auto-generated and used for long time.

• Research required.

* Refer to “Automated Generation of Self-Explanation Questions in Worked Examples in a
Model-Based Tutor”, Amruth N. Kumar.

Conclusion

• There is no guarantee to say that no one is able to cheat in Code
Runner at the end of the Project.

• New anti-cheat system will effectively reduce the probability of
cheating by letting students feel difficult to get unfair pass.

• The system helps students to have a better understanding on course
learning outcomes

• Code Runner becomes relatively fair.

• Future works required to make the system better.

Thank you!

¿Questions?

