BTech451
Final Presentation

Dian LIN

Supervised By Dr. Wannes van der Mark, Dr. Tariq Khan

Code Runner Extension

Code Runner is a free and open-source question-type in Moodle
that allows students to answer programing assignments.

Introduction: Push up barriers(code implementations) into
Code Runner against cheating.

Motivation: The Functionality of cheating detection is not covered
yet by Code Runner. Which may cause:

1. Being unfair to hard-working students
2. Aloss of faith in Code Runner
3. Students try to cheat in Code Runner

Recall

 Studies have been done in first semester:
1. Two research:
-Similarity checking without comments* (not feasible, normally high similarity occurs)

-Programming variation(Hard to be detected by Code Runner)

2. Anti-cheat idea testing (Java): Each student being assigned unique option(question)
-Database schema validation
-Prototype build-up

Reason of testing: Code Runner is a plugin of Moodle, implementing the idea without testing
would possibly destroy Moodle as well as the database.

* What Code Runner works currently does not require students to add comments

Research Process

(Similarity Checking without Comments)

3 lines (shortest) 100%
3-67 lines 68% - 77%
67 lines(longest) 56.6%
Median Length: 30 lines Median similarity:76.7%(relatively high)

Analysis: High similarity would occur due to
short coding length, same question and example

provided in lectures.

Conclusion: Similarity checking is not a feasible
anti-cheating approach because of above

reasons.

Research Process
(Programming variation)
* Question types being selected:

1. recursive question: summing numbers.
2. pre-define question: binary tree.
3. sorting question: bubble-sort, insertion-sort and merge-sort.

* Analysis:

1. Solutions of recursive and sorting questions are both easily found online,
but pre-define question are not possible since Code Runner define Class
for participants.

2. Programming languages translations is an unavoidable personal skill
which is not able to be detected by Code Runner.

Conclusion: pre-defined questions become a preferred
guestion creation way but can't prevent copy-paste cheating.

Second semester studies

* One research: Question recycling. Aims to find out how many or what
percentage of old questions in Code Runner have been reused.

* Two implementations:

1. Unique questions(options) being assigned to different students.(prototype
from Semester 1)

2. Similarity checking with comments*: checking between submissions

* Requirement: PHP programming language

*When comments are required to be added in Code Runner

Research process

(Question Recycling)
Target: one of Stage one Computer Science courses.

Reused 85% 83%
New Defined 6 15% 7 17%
Total 41 100% 41 100%

Analysis: most questions have been recycled without changing
test cases. A high probability of recycling indicates a low anti-
cheat performance.

Conclusion: Question recycling provides an invisible way for
cheaters to get an unfair pass. It can be solved by restricting
students’ access after they have completed the course.

Code Runner Implementation 1
(Personalized assessment)

* Idea: Instead of assigning different questions, being assigned options.

* Description: Creating several options under one question description,
then assigning random options to random students.

 Why option: Even difficulty guarantees a fair system.

* Different from Question Bank: Question bank basically defines
different questions, which implies that different difficulties may
leader to unfair assignments.

Personalized assessment

Continued

Most of user interface and functionalities should be inherited. For Ul, one more field called
“Question options” will be added, and corresponding text area will also be added in the rest parts in
question creation page to specify test cases and sample answers for each options.

Editing a CodeRunner question - Mozilla Firefox 13 B o) 1937 # [l editing a CodeRunner question - Mozilla Firefox ty B 0) 1o

DRSO 8 PHP Insert .. | B8 PHP Updat... | @l Searchmo... | @@l Searchmo... | @ Moodlein... | @ Searchmo... | a Outputfun... | @ Moodlein... | @ Moodlein... | [Newlinein... | @ Moodlein... | & DRI 3 PP insert ... | B PHP Updat... | il Searchmo... | @l Searchmo... | @ Moodlein... | @l Searchmo... | s OutputFfun... | @ Moodlein... | @ Moodlein... | [Newlinein... | @ Moodlein

&)

= €) © localhost, c w B + & O = = €) O localhost, c *“BE 9 ¥ A O =
User overrides Question option - A
Edit quiz Test cases
Preview Question option
ﬂ< Results) L ﬂ< Test case 1
= Locally assigned roles Option description <
- Permissions -
Check permissions
Question option specified
L =8 uestion option
= Logs Q P standard Input
Backup Option description
Restore
[* Question bank N Expected output
Course administration S
ettt Question option
Switch role to...
o P - &
A My profile settings A Extra templale data
—_— R — —_—
Site administration
E Question option E L® N -
S Row properties: Use as example Display | Show & Hide rest if fail Mark Ordering [0
8 Option description 6
Add a block - Test case 2
Add... -
Question option
Option description Question option specified
PS PS
- Standard Input
DV PV
Default mark® 1 e
General feedback
Paragraph
Extra template data
Row properties: () Use as example Display | Show 2| [Hiderestiffal Mark Ordering [10
Test case 3
Path: p

sample answer Question option specified

= Standard Input v

Personalized assessment
(Continued)

* |n order to make the Ul functional,
user input should be inserted into

Moodle database for further use e e L | restnerenent
when students attempt options. byt o 52) o
answerforoption varchar(255) NULL |
* New database schema needs to be optionsampleanswer | longtext NLL |
. optionfortestcase varchar(255) NULL |
d Eﬂ N ed . testcode longtext NULL |
stdin longtext NULL |
e All details of test cases will store in [eesas e T
new database table. T e on |
. hiderestiffail ti_nyl.rinttl) |
e All functions used to relate to mark decinal(s,3) |

“testcases” table will have to
redirected to new database table,

 Md|l _question_options
* New relationships are built up.

Mdl_question_options

Relationships of _ ,
mdl_question_options
Tables

many id(primary key)
id(primary key) Optionname
category Optiontext
many 1 :
name Answerforoption
guestiontext Optionsampleanswer
many _
qtype optionfortestcase
textcode
id(primary key) expected
1 guestionid mark

I_question_categories coderunnertype

id(primary key) prototypetype

e allornothing

contextid

Personalized assessment
(Continued)

» After two options, Odd and Even, were saved from Ul by new anti-
cheat system, all details about each options should be inserted into
new database table with current question ID. Shown below:

e === b e e e TR R T T T T R +
| questionid | optionname | optiontext | testcode | expected |
R R el i e e R -
| 57 | odd | determine if the number is odd or not | System.out.println(check0dd(3)); | true |
| 57 | Even | determine if the number is even or not | System.out.println(checkEven(4)); | true |

Fomm e Frm e e e e e Fomm - +

Personalized assessment
(Continued)

* As new anti-cheat system maintains the functionality from Sandbox which is used to run the
students answers based on test cases. After student view of question has been changed to option
view, Sandbox works in the same way as before.

Question 1 Based on option description, finish the test.

Comect Even: determine if the number is even or not
Marked out of 1.00 Answer:
- public static String checkEven{int number){

Question 1 Based on option description, finish the test.

Comect Odd: determine if the number is odd or not
Marked outof 1.00 ANSWer:

1~ public static String checkOdd(imt number){ 1 - N T
. . e 2 String isEwen = "false";
2 String is0dd = "false"; : iFe b 2--0){
3~ if{number¥2==1){ : i n?mEEr _: o
4 is0dd = "true"; isEwen ="true";
1 H
6 return isEwen;
& return is0dd; . '
7
Check Check
Test Expected | Got =t e =t
. - . . System.out.println{checkEven(4)); |tru tru
System.out.println(check0dd(3)); |true true D ene EnbE = =

|
Passed all tests! Paszed all tests!

Code Runner Implementation 2
(Similarity Checking with Comments)

* ldea: similarity checking with comments required

* Description: Code Runner requires students to add comments for
their program.

e Advantage:
1. Comments are personal thoughts so that they are unlike to be same
2. Adding more distinction between submissions.
3. Help students to have a better learning outcomes. (deeper understanding

on codes)
¢ Expected OutputS: (only highest similarity will be tracked)
1. Comparison between the newest submission and submitted ones.
2. Summary similarity table of every submission after the assignment is due.

Similarity Checking with Comments
(Continued)

* Tracking the details of the student who has the highest similarity
percentage with current submission. May be used in further analysis
for lecturers or tutors. One example below:

The newest submission has the largest 69.02% of similarity
In question ID= 57

To Dian LIN. In User ID= 3.

oK

Similarity Checking with Comments
(Continued)

The highest similarity of submission to the rest of submission (for current question)

* After the assignment |aemene smieiypercentager
is inactive, summary |-—gm
similarity table will [=
be generated. Only S
highest similarity ;ﬁﬁﬁffﬁﬁﬁ:ﬁffﬁffﬁﬁfﬁffﬁ:ﬁ;ﬁzﬁgﬁfﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁfﬁfffﬁffﬁﬁf
percentage would be |*— — 2
recorded. S

* Where program with ;ﬁﬁfﬁﬁﬁfﬁﬁfﬁﬁffffﬁﬁﬁﬁﬁﬁ;ﬁ;ﬁffﬁfﬁﬁffﬁffﬁﬁﬁﬁfﬁf
comments still have |- e
high similarity S
percentage shouldbe [«
noticed. e o

Future work

* Significant downsides:

1. Nonsense comments could possibly be added, similarity will be reduced
while it is not allowed.

2. Heavy manual work-loads for options creating.

e Solutions:

1. Requires Artificial Intelligent knowledge. Al plugin, setting training set
within the plugin, where training set contains sample comments, should be
large enough including different comment styles and texts. Matching
students’ comments with training set.

2. Introduce the idea from Problet* where one general case created, distinct
options will be auto-generated and used for long time.

* Research required.

* Refer to “Automated Generation of Self-Explanation Questions in Worked Examples in a
Model-Based Tutor”, Amruth N. Kumar.

Conclusion

* There is no guarantee to say that no one is able to cheat in Code
Runner at the end of the Project.

* New anti-cheat system will effectively reduce the probability of
cheating by letting students feel difficult to get unfair pass.

* The system helps students to have a better understanding on course
learning outcomes

* Code Runner becomes relatively fair.
* Future works required to make the system better.

Thank youl!

i Questions?

